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Abstract

Spatial crowdsourcing is a crowdsourcing paradigm featured with spatiotemporal information of tasks
and workers. It has been widely adopted in mobile computing applications and urban services such as
citizen sensing, P2P ride-sharing and Online-To-Offline services. One fundamental and unique issue in
spatial crowdsourcing is dynamic task assignment (DTA), where tasks and workers appear dynamically
and need to be assigned under spatiotemporal constraints. In this paper, we aim to provide a brief
overview on the basics and frontiers of DTA research. We define the generic DTA problem and introduce
the evaluation metrics to its solutions. Then we review mainstream solutions to the DTA problem. Finally
we point out open questions and opportunities in DTA research.

1 Introduction

Crowdsourcing is a computing paradigm where humans actively participate in the procedure of computing,
especially for the tasks that are intrinsically easier for humans than for computers. There has been active research
on crowdsourcing [3, 11, 16, 22, 23] using web-based crowdsourcing platforms such as Amazon Mechanical
Turks (AMT) and oDesk. The development of mobile Internet and sharing economy has triggered the shift from
web-based crowdsourcing to spatial crowdsourcing (a.k.a mobile crowdsourcing) [4], where (i) each worker
is considered as a mobile computing unit to complete tasks using their mobile devices [18] and (ii) spatial
information such as location, mobility and the associated contexts plays a crucial role. Applications of spatial
crowdsourcing have deeply penetrated into everyday life. Some of the most representative applications include
real-time taxi-calling services (e.g., Uber and DiDi), product placement checking services in supermarkets (e.g.,
Gigwalk and TaskRabbit) on-wheel meal-ordering services (e.g., GrubHub and Instacart), and citizen sensing
services (e.g., Waze and OpenStreetMap).

As with web-based crowdsourcing, a central issue in spatial crowdsourcing is task assignment, which aims
to assign tasks to suitable workers such that the total weighted value of the assigned pairs of tasks and workers
is maximized or the total moving distance of the workers is minimized [13, 26, 25, 28, 19, 27, 29, 30]. Different
from task assignment in web-based crowdsourcing, the unique spatiotemporal dynamics in spatial crowdsourc-
ing calls for new designs in task assignment theories and methods. Particularly, the tasks and works in spatial
crowdsourcing may appear dynamically and task assignment needs to be performed immediately or in a short
period, a.k.a. dynamic task assignment (DTA).

The DTA problem is challenging because (i) assignments are made under incomplete information; (ii) as-
signments usually cannot be revoked; and (iii) assignments need to be performed computationally efficient to
meet the real-time requirements on large datasets. We formulate the generic DTA problem in Sec. 2 and review
representative solutions to the DTA problem in Sec. 3. We finally point out open questions and opportunities for
future research on DTA in Sec. 4.
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2 Dynamic Task Assignment Problem

2.1 Problem Statement

For a spatial crowdsourcing platform (“platform” for short), the generic dynamic task assignment problem can
be formulated based on the following definitions.

Definition 1 (Task): A task, denoted by t =< lt, at, dt, ct >, at the location lt in the 2D space is posted on the
platform at time at and is either allocated to a worker who arrives on the platform before the response deadline
dt or cannot be allocated thereafter. No more than ct worker are required to perform the task.

Definition 2 (Worker): A worker, denoted by w =< lw, aw, dw, cw >, arrives at the platform with an initial
location lw in the 2D space at time aw and either performs a task which arrives at the platform before its response
deadline dw or does not conduct any task. Once a worker finishes a task, s/he can be viewed as a new worker if
s/he is willing to be assigned other tasks. A worker is able to perform cw tasks at most.

Definition 3 (Constraint Function): A constraint function fc(t, w) is used to indicate whether t can be as-
signed to w. Generally speaking, the constraint function is related to some spatiotemporal requirements, such as
whether t is in the service range of w, or whether w can arrive at the position of t before its deadline.

Definition 4 (Utility Function): A utility function fu(t, w) is used to measure the utility of assigning t to w. It
can be the payoff of the task or the payoff times the probability that t can be finished successfully.

Definition 5 (Distance Function): A moving cost function fd(t, w) is used to measure the cost of w if s/he
moves to the location of t to perform the task. In practice the distance function can be the Euclidean distance or
road network distance between t and w.

Definition 6 (DTA Problem): Assume a set of tasks T , a set of workers W , a constraint function fc(·, ·), a util-
ity function fu(·, ·) and a distance function fd(·, ·) on a spatial crowdsourcing platform. Suppose initially there
is no task or worker on the platform. Workers and tasks then arrive dynamically at any time. The DTA problem
is to find an assignment M among the tasks and the workers for different objectives, which can be either maxi-
mizing the total utility U =

∑
(t,w)∈M fu(t, w) or minimizing the total moving cost C =

∑
(t,w)∈M fd(t, w) of

the assignment pairs, such that the following constraints are satisfied:

• Spatiotemporal constraint: ∀(t, w) ∈M,fc(t, w) = 1, which means that t can be assigned to w.

• Invariable constraint: once a task t is assigned to a worker w, the allocation of (t, w) cannot be changed.

As opposed to static task assignment, where the spatiotemporal information of all the workers and tasks is
known, the DTA problem needs to make an effective assignment with partial information about the workers and
tasks. We illustrate the DTA problem for maximizing the total utility using the following example.

Example 1: Suppose we have five tasks t1-t5 and three workers w1-w3 on a spatial crowdsourcing platform,
whose initial locations are shown in a 2D space in Fig. 1. Each worker has a spatial restricted activity range,
indicating that the worker can only conduct tasks that locate within the range, which is shown as a dotted circle
in Fig. 1. Each user also has a capacity (i.e., cw), which is the maximum number of tasks that can be assigned to
him/her. In this example, the capacity of each worker is 2 and the capacity of each task is 1. Fig. 2 presents the
utility values for each pair of task and worker, which is marked on the edge between the worker and the task. In
the static scenario, the total utility of the optimal task assignment is 10 (marked in red in Fig. 2). However, in
the dynamic scenario, the offline solutions are not always applicable since both the workers and the tasks arrive
dynamically at the platform. This is the main challenge for dynamic task assignment.
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Figure 1: An instance of dynamic task assignment. Figure 2: The utility between workers and tasks.

2.2 Evaluation Metric for DTA Algorithms

The solutions to the DTA problem are usually online algorithms [2].Different from traditional approximation al-
gorithms for which approximation ratios are utilized to measure the approximation quality, for online algorithms,
competitive ratios (CR) are used to evaluate their performance. In particular, the competitive ratio measures how
good an online algorithm is compared with the optimal result of the offline model where all the information is
provided. Based on different assumptions on the arrival order of the tasks and workers, typical online models
include the adversarial model, random order model and i.i.d model. Take the goal of maximizing total utility as
examples. The corresponding competitive ratios of the three types of online models are defined as follows.

Definition 7 (CR in the Adversarial Model [17]): The competitive ratio in the the adversarial model of a spe-
cific online algorithm for the DTA problem is the following minimum ratio between the result of the online
algorithm and the optimal result over all possible arrival orders of the tasks and the workers,

CRA = min∀G(T,W,U) and ∀v∈V
Performance of M

Performance of OPT
(1)

where G(T,W,U) is an arbitrary input of tasks, workers and their utilities, V is the set of all possible input
orders, and v is one order in V .

Definition 8 (CR in the Random Order Model [17]): The competitive ratio in the the random order model of
a specific online algorithm for the DTA problem is the following ratio,

CRRO = min∀G(T,W,U)
E[Performance of M ]

Performance of OPT
(2)

where G(T,W,U) is an arbitrary input of tasks, workers and their utilities, E[MaxSum(M)]
MaxSum(OPT ) is the expectation of

the ratio of the total utility produced by the online algorithm and the optimal total utility of the offline scenario
over all possible arrival orders.

Definition 9 (CR in the i.i.d Model [10]): The competitive ratio in the i.i.d model of a specific online algorithm
for the DTA problem is the minimum ratio of the result of the online algorithm over the optimal result under all
possible arrival orders generated by the spatiotemporal distributions of the tasks and the workers DR and DW ,

CRi.i.d = min∀G(T,W,U) and ∀v∈V follows DR and DW

Performance of M
Performance of OPT

where G(T,W,U) is an arbitrary input of tasks, workers and their utilities, V is the set of all possible input
orders of tasks and the workers, and v is one order in V .
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3 Dynamic Task Assignment Algorithms

Solutions to the dynamic task assignment problem roughly fall into two modes: batch mode and real-time mode.
Batch mode periodically processes a set of workers and tasks that arrive within a specific time interval. Real-
time mode makes an assignment immediately when a worker or a task appears on the platform. Both modes are
able to handle dynamically arrived workers and tasks. However, only the real-time mode is suited for stringent
real-time requirement, i.e., tasks should be assigned immediately upon arrival.

3.1 Batch Mode

The basic idea of the batch mode is to periodically make an assignment in the static scenario, i.e., both workers
and tasks have already appeared on the platform. All the existing solutions in the batch mode [13, 14, 21, 20, 6]
aim to maximize the total utility. According to the methods to conduct the static assignment, the batch mode
can be further categorized as maxmimum flow based methods [13, 14, 21] and greedy based methods [20, 6].

Figure 3: The procedure of reducing DTA to the maximum flow problem.

Maximum Flow Based Methods. Kazemi et al. [13] are the first to use a batch mode solution to the DTA
problem in spatial crowdsourcing. Since they aim to maximize the number of performed tasks (i.e., the utility
between each worker and task is 1), the basic idea is to reduce the instance of DTA into an instance of maximum
flow problem. Fig. 3 illustrates the procedure of the reduction. First, the capacity of the edge (src, wi) is cwi

because each worker can only perform cwi tasks at most. Second, since workers can only perform tasks that
are in their regions (e.g., w1 can only perform t1), the vertex mapped from wi can transfer flow to only some
of the vertices mapped from those tasks (e.g., the edge between w1 and t1). The capacity of the edge between
workers and tasks is 1 because a worker would not repeatedly perform the same task. Last, the capacity of the
edge (tj , dest) is ctj because a task can only have at most ctj assigned workers. By reducing to the maximum
flow problem, any algorithm that computes the maximum flow in the network can be used to solve the instance,
e.g., Ford-Fulkerson algorithm [15]. Finally, the assignment between workers and tasks can be induced through
the flow and capacity between wi and tj in the instance of maximum flow problem. Consequently, to solve the
DTA problem we repeat this step for every batch.

Multiple heuristics techniques have been proposed to optimize solutions in the batch mode. Hient et al. [21]
introduce a Least Location Entropy Priority (LLEP) strategy to seek a global optimal by considering future
coming workers. They use entropy of a location to measure the total number of workers in that location as well
as the relative proportion of their future visits to that location. A higher priority is given to tasks located in areas
with smaller location entropy, because those tasks have a lower chance of being completed by other workers. A
Nearest Neighbor Priority (NNP) Strategy is also proposed to minimize the total travel distance of workers.
Greedy Based Methods. Greedy is a straightforward batch mode solution to the DTA problem. Hien et al. [20]
propose to always select the worker who has the maximum number of unperformed tasks. Cheng et al. [6]
design a greedy strategy to always select the pair of worker and task with the maximum utility. The benefit of
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the greedy methods is that they are usually efficient and a few techniques can help improve the effectiveness of
the methods. Some successful optimization techniques include prediction the arrivals of tasks and workers [6],
divide-and-conquer [6], etc.
Summary. A comprehensive experimental comparison among batch-based solutions can be found in [5].
LLEP [21] is more effective but less efficient due to the time complexity of maximum flow problem and
NNP [21] is more efficient. Note that assignment algorithms in the batch mode are online algorithms and it
is possible to analyze their theoretical guarantees under partial information, i.e., competitive ratio. However, all
the methods in the batch mode [13, 14, 21, 20, 6] can only guarantee their effectiveness within a batch but there
is no guarantee on the global performance. It remains open whether the batch mode is competitive under the
adversarial model, random order model and i.i.d model.

3.2 Real-time Mode

Solutions in the real-time mode to the DTA problem decide the assignment once a worker or a task appears on the
platform and are thus more challenging than those in the batch mode. Existing solutions in the real-time mode
vary in objective goals. Popular optimization objectives include minimizing the total travel distance between
workers and tasks [12, 1, 17, 25] such that the average waiting time of tasks (e.g., passengers in taxi dispatching
services [31]) is minimized, and maximizing the total utility between workers and tasks [26, 19, 28, 7, 8].
Minimizing the Total Distance. Greedy [12] can be a naive method to immunize the total distance. It matches
each new arrival request to its currently nearest unmatched worker. The competitive ratio of Greedy isO(2n−1)
under adversarial model [12]. In [12], the authors also propose another method, called Permutation, to further
improve the competitive ratio toO(2n−1). The basic idea of Permutation is to make an assignment for each task
according to the result of the offline minimum weighted matching (e.g., Hungarian algorithm). Since a determin-
istic method may easily obtain a worse competitive ratio under the adversarial model, other researchers [1, 17]
utilize the Hierarchically Separated Tree (HST) [9] to design a randomized algorithm such that a log-scale
competitive ratio can be obtained. Specifically, they first embed the metric space into an HST. Then, they use
HST-Greedy [17] and HST-Reassignment [1] to achieve the ratio of O(log3 n) and O(log2 n). However, these
studies [12, 1] mainly focus on analyzing the worst-case competitive ratios of the proposed online algorithms,
while [25] studies the performance of these algorithms in practice (i.e., Random Order Model). Particularly,
they observe a surprising result that the simple and efficient greedy algorithm, which has been considered as the
worst due to its exponential worst-case competitive ratio, is significantly more effective than other algorithms.
They further show that the competitive ratio of the worst case of the Greedy algorithm is actually a constant of
3.195 in the average-case analysis.
Maximizing the Total Utility. In order to maximize the total utility between workers and tasks, Tong et al. [26]
propose a Hungarian-based method called TGOA with competitive ratio 1/4 under random order model. They
also propose a greedy-based method called TGOA-Greedy with competitive ratio 1/8 under the same model.
Both [26] and [19] propose a threshold-based method to maximize the utility in bipartite matching [26] and
trichromatic matching [19]. A threshold of utility is sampled beforehand and the method arbitrarily choose an
assignment only if the utility between the worker and the task is above the threshold. In practice, prediction is
also used to improve the effectiveness and efficiency of the real-time methods [28, 24, 7, 8].
Summary. A comprehensive experimental comparison among solutions in the real-time mode which minimize
the total distance can be found in [25]. From large-scale evaluations, a surprising result is observed that the
simple greedy algorithm may be still competitive in the random order model, which is more practical than the
adversarial model. Nevertheless, comprehensive evaluations among solutions in the real-time mode in the goal
of maximizing the total utility are still missing.

We summarize existing solutions in the real-time mode in Table 1. Constant competitive ratio is usually
achievable under the random order model and the i.i.d model. The competitive ratio under i.i.d model is usually
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Table 1: Comparisons of existing real-time solutions to the dynamic task assignment problem.

Objective Method Analysis Model Competitive Ratio

Minimize Distance

Greedy [12] Adversarial O(2n − 1)
Permutation [12] Adversarial O(2n− 1)
HST-Greedy [17] Adversarial O(log3 n)
HST-Reassignment [1] Adversarial O(log2 n)
Greedy [25] Random order 3.195 in worst case

Maximize Utility

TGOA [26] Random Order 0.25
TGOA-Greedy [26] Random Order 0.125
Basic-Threshold [19] Random Order 1/(3e ln(Umax + 1))
POLAR-OP [28] i.i.d 0.47
ADAP [7] i.i.d 0.5− ε
NADAP [8] i.i.d 0.295

higher, because prediction is usually helpful to improve the effectiveness of method in practice [28, 7, 8].

4 Conclusion

In this article, we formulate the generic Dynamic Task Assignment (DTA) problem for spatial crowdsourcing
and briefly review the state-of-the-art solutions to the DTA problem. As an emerging research topic, DTA is far
from mature. We list some of the open questions below. One interesting open problem is whether Greedy can
achieve constant competitive ratio under the random order model for the DTA problem when minimizing total
distance [25]. Another open issue is whether existing spatial indexes, which support moving object queries, can
be extended to support the online data processing in spatial crowdsourcing. Finally, well-defined benchmarks to
test and compare different spatial crowdsourcing data processing techniques are still missing. We envision this
paper to not only raise awareness of DTA in the database community but also invite the database researchers to
advance this promising area.
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